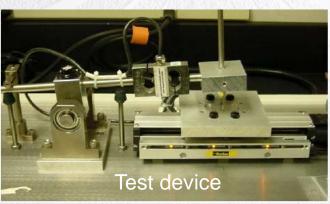

TechniPad ENEPIG

Wear Resistance Data

Measurement Of Wear Resistance Coefficient Of Friction

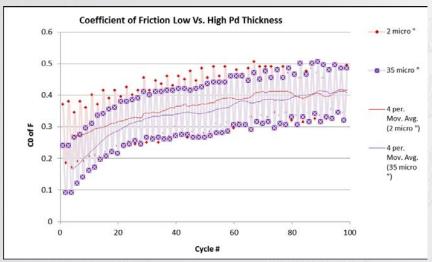
Test Method;

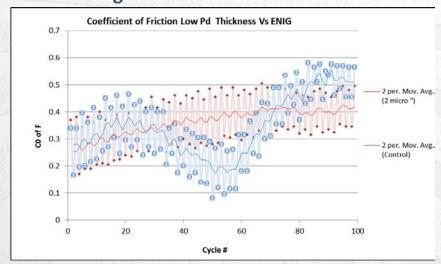

- ASTM G133-05

Cycles =,"100"
Wipe Length =,"15","mm"
Velocity =,"6","mm/s"
Acceleration =,"150","mm/s/s"
Weight = ,"200","g"

Test Coupon

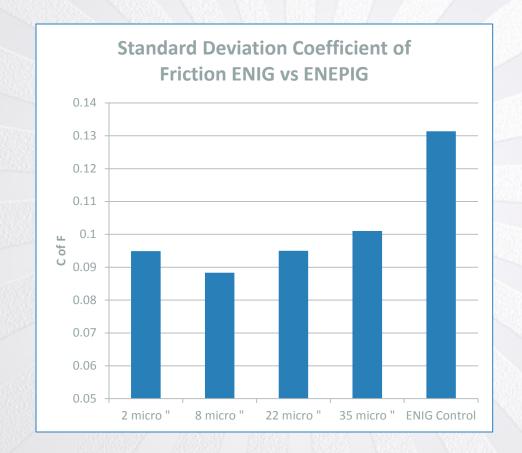
- Flat & Dome Connectors
- ENEPIG Plated with ~2, 8, 22, &
 35 micro inches of Pd
- ENIG control



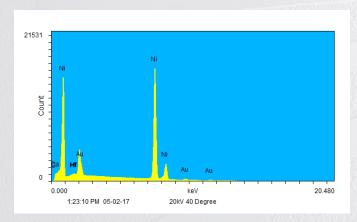


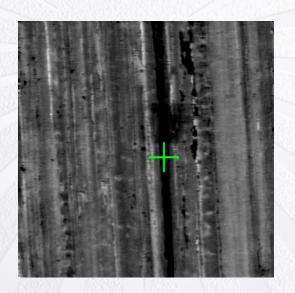
Coefficient of Friction: Low Pd Thickness vs High Pd Thickness & ENIG

2 vs 35 micro-inches Pd No difference in CoF


2 micro inches Pd vs ENIG Ave CoF higher with ENIG & after Au Removal

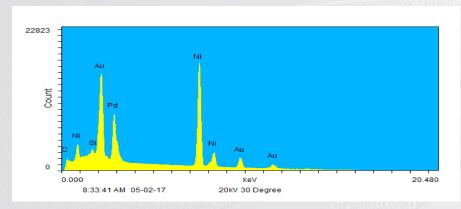
Summary Coefficient of Friction Data


- Save basic curve shape for all Pd thicknesses
- Much larger variation in coefficient of friction with ENIG
- Standard deviation for ENEPIG with AT7611 all similar
- Standard deviation for ENIG is 40% higher



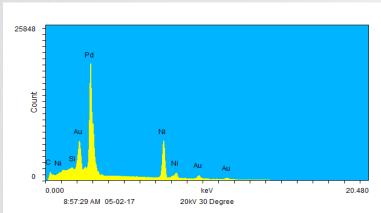
SEM/EDS Analysis ENIG Control

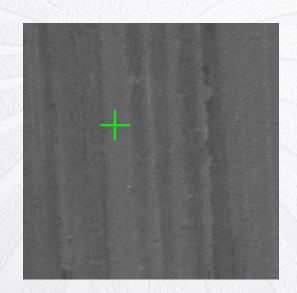
- Damage to surface with cracking of deposit
- Au % on surface normally > 50% on ENIG


Elements:	WT%	AT%	K_A	K_F	K_Z	Intensity	P/bkg
NiK	91.44	97.29	0.994	1.005	1.016	1646.789	36.8
AuL	8.56	2.71	0.979	1	0.751	17.207	0.5

SEM/EDS Analysis ENEPIG ~2 micro inches Pd

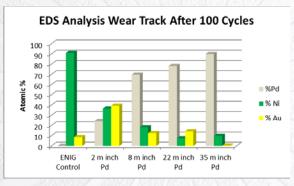
- No knurling or cracking of deposit
- High % Ni showing indicating wear through at this Pd thickness

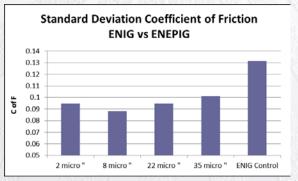

							.0000000
Elements:	WT%	AT%	K_A	K_F	K_Z	Intensity	P/bkg
AuM	39.28	19.02	0.929	1	0.878	806.765	5.5
PdL	24.25	21.74	0.745	1	0.975	267.761	2.1
NiK	36.46	59.24	0.956	1.022	1.127	851.892	13.8



SEM/EDS Analysis ~8 micro inches Pd

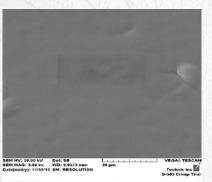
- Pd appears to smear similar to hard gold
- %Ni cut by 50% over 2 micro inch sample

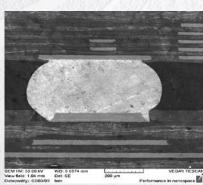

Elements:	WT%	AT%	K_A	K_F	K_Z	Intensity	P/bkg
AuM	12.06	5.96	0.965	1.001	0.883	346.897	2.2
PdL	69.67	63.74	0.903	1	0.982	1259.064	11.2
NiK	18.27	30.3	0.945	1.007	1.131	559.355	9.8

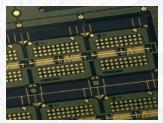


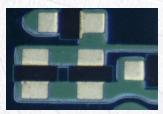
Summary: TechniPad ENEPIG Wear Resistance Testing

- CoF on ENEPIG with AT7611 is consistent even with variation in Pd thickness.
- Ni exposure is minimal as Pd thickness reaches 10 micro inches
- Pure Pd deposit from TechniPad AT7611 provides some lubricity similar to a hard gold deposit






THE SOLUTION: TechniPad ENIG & ENEPIG


Outstanding Assembly Performance

- Flat EN = No black pad/corrosion products on EN Surface
- Proprietary immersion gold process with almost no Ni removal
- Thin intermetallic
- Lowest Operating Cost
- Solves ENIG Process Issues
- All Interconnect Applications
 - Low contact & good wear resistance
 - Wire bondable
 - Solderable

