

Temperature Compensation by Embedded Temperature Variation Method for an AC Voltammeric Analyzer of Electroplating Baths

Aleksander Jaworski, Hanna Wikiel and Kazimierz Wikiel Technic, Inc., Cranston, RI, USA

Typical Copper Plating Bath Composition

Copper	Copper Sulfate 0.25-1 mol/L	
Acid	Sulfuric Acid0.1-2 mol/l	
Chloride	Chloride Ion 20-100 ppm	
Suppressor	Suppressor $H_{0} \rightarrow 0 \rightarrow 1_{n} \rightarrow 0 \rightarrow PEG$ $H_{0} \rightarrow 0 \rightarrow 1_{n} \rightarrow 0 \rightarrow 0 \rightarrow PPG$	100s ppm
Accelerator	Accelerator $R - S - S - R$ Disulfide group $R - SH$ Thiol group $HO_3S - S - S - S - SO_3H$ $HO_3S - S - S - S - SO_3H$	ppm(s) SPS MPS
Leveler	Leveler R ² R ⁴ R ⁴ R ⁴ R ⁴ R ¹ Imidazolium	sub-ppm to g/L)

Jaworski et al., 17th ESEAC, Rodos, Greece, June 3-7, 2018

2

TECHNIC INC

Superfilling Mechanisms of Submicron Features adsorption-based, temperature dependent

Strong adsorbing Leveler inhibits plating (by deactivating accelerator) in the field and at the mouth of the feature. Diffusion-Consumption Model

Suppressor: adsorption instantaneous but weak, diffuses slowly, but moderately concentrated: adequate initial supply.

Accelerator: adsorption of moderate pace but strong, diffuses fast, but low concentration: insufficient initial supply, gradual displacement of suppressor, bottom-up plating Curvature Enhanced Accelerator Coverage Model

P.M. Vereecken et al., IBM J. Res. & Dev. Vol. 49 No 1, January 2005, pp.3-18

"Simple System": Cu²⁺, H₂SO₄, Cl⁻, suppressor, accelerator

Table 1Reactions at the copper/electrolyte interface in coppersulfate plating baths containing Cl^- , SPS [bis(sulfopropyl)disulfide: $S(CH_2)_3SO_3H)_2$] or MPS [mercaptopropane sulfonic acid: $HS(CH_2)_3SO_3H]$ as accelerator and a polyether suppressormolecule [H(($CH_2)_xO)_yOH$]. The deprotonated MPS thiol groupis indicated as "thiolate" in the formula.

Copper comproportionation reactions

 $\{1\} \qquad Cu+Cu^{2+}\rightleftharpoons 2Cu^+$

$$\{2\} \qquad Cu + Cu^{2+} + 2Cl^{-} \rightleftharpoons 2CuCl_{ad}$$

{3}
$$Cu + Cu^{2+} + 2MPS \rightleftharpoons 2Cu(thiolate)_{ad} + 2H$$

Redox reactions involving SPS

$$\{4\} \qquad 2Cu^+ + SPS + 2H^+ \rightleftharpoons 2Cu^{2+} + 2MPS$$

$$\{5\} \qquad 4Cu^+ + SPS \rightleftharpoons 2Cu^{2+} + 2Cu(I)(thiolate)_{ad}$$

 $\{6\} \qquad 2Cu^{2+} + 4MPS \rightleftharpoons 2Cu(I)(thiolate)_{ad} \\ + SPS + 4H^+$

Surface adsorption reactions

$$\{7\}$$
 2Cu_s + SPS \Rightarrow 2Cu(I)(thiolate)_{ad}

$$\{8\} \qquad n \operatorname{CuCl}_{ad} + \operatorname{HO}((\operatorname{CH}_2)_x \operatorname{O})_y \operatorname{H} \rightleftharpoons \\ \left[\operatorname{HO}((\operatorname{CH}_2)_x \operatorname{OCuCl})_n ((\operatorname{CH}_2)_x \operatorname{O})_{y-n} \operatorname{H}\right]$$

ad

Exchange reactions

- {9} $\operatorname{CuCl}_{ad} + \operatorname{MPS} \rightleftharpoons \operatorname{Cu}(I)(\operatorname{thiolate})_{ad} + \operatorname{Cl}^- + \operatorname{H}^+$
- {10} $[\text{HO}((\text{CH}_2)_x \text{OCuCl})_n ((\text{CH}_2)_x \text{O})_{y-n} \text{H}]_{\text{ad}}$ $+ n \text{MPS} \rightleftharpoons \text{HO}((\text{CH}_2)_x \text{O})_y \text{H} + n \text{Cl}^-$ $+ n \text{Cu}(\text{I})(\text{thiolate})_{\text{ad}}$

Complexation reactions

- $\{11\} \qquad Cu^+ + Cl^- \rightleftharpoons CuCl_{ad}$
- $\{12\} \qquad \text{CuCl}_{\text{ad}} + \text{Cl}^- \rightleftharpoons \text{CuCl}_2^-$
- {13} $CuCl_{ad} + MPS \rightleftharpoons CuCl(thiolate)^{-} + H^{+}$
- {14} $Cu^+ + MPS \rightleftharpoons Cu(I)(thiolate)_{ad} + H^+$
- $\{15\}$ $Cu^+ + SPS \rightleftharpoons Cu(I)(SPS) + H^+$
- {16} $Cu(I)(thiolate)_{ad} + MPS \rightleftharpoons Cu(I)(thiolate)_2^- + H^+$
- {17} $Cu(I)(thiolate)_{ad} + Cl^{-} \rightleftharpoons Cu(thiolate)Cl^{-}$
- {18} $4Cu(I)(thiolate)_{ad} + Cu^{2+} \rightleftharpoons Cu[Cu(I)(thiolate)]_4^{2+}$
- {19} $Cu(I)(thiolate)_{ad} + Cu^+ \rightleftharpoons$ $Cu(I)(thiolate)Cu(I) + H^+$

P.M. Vereecken at al., IBM J. Res. & Dev. Vol.49 No 1 January 2005, p.3-18

Multitask Electrochemical Probe

Two Training Sets: at constant temperature and with embedded temperature variation

Leveler,	Su	ppressor,	Accelerator,	Temperature ° C	
N _{Lev}		N _{Supp}	N _{Acc}		10.85
<mark>0.67</mark>		<mark>0.50</mark>	<mark>0.67</mark>	<mark>19.0</mark>	
<mark>0.67</mark>		<mark>1.50</mark>	<mark>0.83</mark>	20.0	
<mark>0.67</mark>		<mark>1.25</mark>	<mark>1.00</mark>	21.0	
<mark>0.67</mark>		<mark>1.00</mark>	<mark>1.17</mark>	22.0	
<mark>0.67</mark>		<mark>0.75</mark>	1.33	<mark>23.0</mark>	
<mark>0.83</mark>		<mark>1.00</mark>	<mark>1.33</mark>	<mark>19.0</mark>	
<mark>0.83</mark>		<mark>0.75</mark>	0.67	20.0	
<mark>0.83</mark>		<mark>0.50</mark>	0.83	<mark>21.0</mark>	
<mark>0.83</mark>		<mark>1.50</mark>	<mark>1.00</mark>	<mark>22.0</mark>	
<mark>0.83</mark>		<mark>1.25</mark>	<mark>1.17</mark>	<mark>23.0</mark>	
<mark>1.00</mark>		<mark>1.50</mark>	<mark>1.17</mark>	<mark>19.0</mark>	
<mark>1.00</mark>		<mark>1.25</mark>	<mark>1.33</mark>	20.0	
<mark>1.00</mark>		<mark>1.00</mark>	<mark>0.67</mark>	<mark>21.0</mark>	
<mark>1.00</mark>		<mark>0.75</mark>	<mark>0.83</mark>	<mark>22.0</mark>	
<mark>1.00</mark>		<mark>0.50</mark>	<mark>1.00</mark>	<mark>23.0</mark>	
<mark>1.17</mark>		<mark>0.75</mark>	<mark>1.00</mark>	<mark>19.0</mark>	
<mark>1.17</mark>		<mark>0.50</mark>	<mark>1.17</mark>	<mark>20.0</mark>	
<mark>1.17</mark>		<mark>1.50</mark>	<mark>1.33</mark>	<mark>21.0</mark>	
<mark>1.17</mark>		<mark>1.25</mark>	<mark>0.67</mark>	<mark>22.0</mark>	
<mark>1.17</mark>		<mark>1.00</mark>	<mark>0.83</mark>	<mark>23.0</mark>	
<mark>1.33</mark>		<mark>1.25</mark>	<mark>0.83</mark>	<mark>19.0</mark>	
<mark>1.33</mark>		<mark>1.00</mark>	<mark>1.00</mark>	<mark>20.0</mark>	
<mark>1.33</mark>		<mark>0.75</mark>	<mark>1.17</mark>	<mark>21.0</mark>	
<mark>1.33</mark>		<mark>0.50</mark>	<mark>1.33</mark>	22.0	FCHNIC
<mark>1.33</mark>	6	<mark>1.50</mark>	<mark>0.67</mark>	23.0	LUIIIIU

Fundamental Frequency AC Cyclic Voltammogram: Dependence on Leveler Concentration

f=50 Hz, φ=0°, A=50 mV, v=50 mV/s, E_{ini}=0.8, E_{vertex}=0 V vs. E_{Cu²⁺/Cu}

Variable Selection Based on Leveler Impact Regression analysis of voltammetric data

 $X^{(I \times J)}$ voltammetric data matrix $c^{(I \times 1)}$ leveler concentration vector $t^{(I \times 1)}$ temperature

 $\begin{aligned} \hat{c}_{i,j} &= \beta_{0,j} + \beta_{1,j} x_{i,j} & \text{LSR equation} \\ \hat{c}_{i,j} &= \beta_{0,j} + \beta_{1,j} x_{i,j} + \beta_{2,j} t_i & \text{trivariate regression eq.} \end{aligned}$

$$R_{j}^{2} = \frac{\left\{\sum_{i=1}^{I} c_{i} \hat{c}_{i,j} - \sum_{i=1}^{I} c_{i} \sum_{i=1}^{I} \hat{c}_{i,j}/I\right\}^{2}}{\left\{\sum_{i=1}^{I} c_{i}^{2} - \left(\sum_{i=1}^{I} c_{i}\right)^{2}/I\right\}\left\{\sum_{i=1}^{I} \hat{c}_{i,j}^{2} - \left(\sum_{i=1}^{I} \hat{c}_{i,j}\right)^{2}/I\right\}} \text{ squared correlation coefficient}$$

Variable Selection Based on Leveler Impact

Leveler calibrations: R² calculated individually for points of voltammograms of training sets CC and CV

Variable Selection Based on Leveler Impact

A selected portion of AC voltammogram for a range corresponding to applied DC potential of 260 to 134 mV vs. E _{Cu²⁺/Cu}, respectively recorded at 21°C for different concentrations of leveler additive.

Jaworski et al., 17th ESEAC, Rodos, Greece, June 3-7, 2018

Variable Selection Based on Temperature Impact

Five subsets of the training set with parametrized leveler concentration

Leveler,	Suppressor,	Accelerator,	Temperature ° C	
N _{Lev}	N _{Supp}	N _{Acc}		
<mark>0.67</mark>	<mark>0.50</mark>	<mark>0.67</mark>	<mark>19.0</mark>	
<mark>0.67</mark>	<mark>1.50</mark>	<mark>0.83</mark>	<mark>20.0</mark>	
<mark>0.67</mark>	<mark>1.25</mark>	<mark>1.00</mark>	<mark>21.0</mark>	
<mark>0.67</mark>	<mark>1.00</mark>	<mark>1.17</mark>	<mark>22.0</mark>	
<mark>0.67</mark>	<mark>0.75</mark>	<mark>1.33</mark>	<mark>23.0</mark>	
<mark>0.83</mark>	<mark>1.00</mark>	<mark>1.33</mark>	<mark>19.0</mark>	
<mark>0.83</mark>	<mark>0.75</mark>	0.67	<mark>20.0</mark>	
<mark>0.83</mark>	0.50	<mark>0.83</mark>	<mark>21.0</mark>	
<mark>0.83</mark>	<mark>1.50</mark>	<mark>1.00</mark>	<mark>22.0</mark>	
<mark>0.83</mark>	<mark>1.25</mark>	<mark>1.17</mark>	<mark>23.0</mark>	
1.00	<mark>1.50</mark>	1.17	<mark>19.0</mark>	
1.00	1.25	<mark>1.33</mark>	20.0	
1.00	1.00	0.67	21.0	
1.00	0.75	0.83	22.0	
1.00	0.50	1.00	<mark>23.0</mark>	
<mark>1.17</mark>	<mark>0.75</mark>	<mark>1.00</mark>	<mark>19.0</mark>	
<mark>1.17</mark>	<mark>0.50</mark>	<mark>1.17</mark>	<mark>20.0</mark>	
1.17	<mark>1.50</mark>	<mark>1.33</mark>	<mark>21.0</mark>	
<mark>1.17</mark>	<mark>1.25</mark>	<mark>0.67</mark>	<mark>22.0</mark>	
<mark>1.17</mark>	<mark>1.00</mark>	<mark>0.83</mark>	<mark>23.0</mark>	
1.33	1.25	0.83	19.0	
1.33	1.00	1.00	20.0	
1.33	0.75	1.17	21.0	
1.33	0.50	1.33	22.0 🏄 T	CHNIC INC
1.33	11 1.50	0.67	23.0	

Variable Selection Based on Temperature Impact Relationship between temperature and univariate voltammetric data within 1/5 subsets of the training set

 $\hat{t}_i = \alpha_{0,j} + \alpha_{1,j} x_{i,j}$ regression equation

$$R_{t,j}^{2} = \frac{\left\{\sum_{i=1}^{I/5} t_{i} \hat{t}_{i,j} - \sum_{i=1}^{I/5} t_{i} \sum_{i=1}^{I/5} \hat{t}_{i,j} / (I/5)\right\}}{\left\{\sum_{i=1}^{I/5} t_{i}^{2} - \left(\sum_{i=1}^{I/5} t_{i}\right)^{2} / (I/5)\right\} \left\{\sum_{i=1}^{I/5} \hat{t}_{i,j}^{2} - \left(\sum_{i=1}^{I/5} \hat{t}_{i,j}\right)^{2} / (I/5)\right\}}$$

squared correlation coefficient

Variable Selection Based on Temperature Impact

Squared correlation coefficients between selfpredicted and actual temperature values calculated individually for each point of voltammogram, subsets of matrix CV with parametrized leveler concentration

Variable Selection Based on Temperature Impact

AC voltammogram for leveler, selected range 542-668, dependence on temperature at parametrized leveler concentration of 1.33 N Lev

Calibration Calculation by Principal Component Regression (PCR)

 $X = SV^{T} + E$ $\beta = (S^{T}S)^{-1}S^{T}c$ $\hat{c}_{u} = x_{u}V\beta$ PCA decomposition into scores *S* and loadings *V* Inverse Least Squares Regression on scores Regression equation

 $S_t = [S t]$ $\boldsymbol{\beta}_t = (\boldsymbol{S}_t^T \boldsymbol{S}_t)^{-1} \boldsymbol{S}_t^T \boldsymbol{c}$ PCA scores augmented with temperature Inverse Least Squares Regression on scores augmented with temperature

 $\hat{c}_u = [\boldsymbol{x}_u \boldsymbol{V} \, t_u] \boldsymbol{\beta}_t$

Regression equation with embedded temperature variance

Prediction of Leveler Concentration in Validation Set Samples

22.5°C

Model at 21° C

20.5° C

21.5°C

Embedded temp. var.

19.5°C

Conclusions

General, rigorous routine for the development of the analytical method using a chemometric model with temperature variation embedded in regression is introduced for exemplary determination of leveler additive concentration by AC voltammetry.

Chemometrics is critical in mitigating the adverse effect of temperature variation on accuracy of concentration prediction by an on-line AC voltammetric analyzer.

Accurate calibration can be calculated for experimental conditions where hardmodels do not exist.

Chemometrics promotes an interest in AC-based electroanalytical techniques for industrial applications.

